1 引言
莱钢棒材连轧棒材生产线产品为φ16~φ
2 张力控制的基本原理
为了保证热连轧的正常连续轧制,必须遵循的基本原则是:机架间金属秒流量相等。即
An×Vn=An-1×Vn-1 (1)
式中 An——第n架的轧件截面面积
Vn——第n架的轧件出口速度
可以看出,决定金属秒流量大小的因素,一是轧件截面面积,另一个就是轧制速度。而第一个因素决定于工艺参数,如孔型道次、辊缝压下量、钢温等,一旦调整好就固定不变,所以只能通过选择和调整不同的轧制速度来满足这一基本条件。从式(1)可以推出对于相邻机架间的速度关系应当满足公式
Rn=Vn/Vn-1=An-1/An (2)
式中心——金属延伸率(或减径因子),其物理意义可模拟成进入机架n-1与机架n的轧件截面之比。
然而,在实际应用中,由于轧件受钢温、材质、坯料形状、孔型磨损等扰动因素的影响,无法保证精确的截面值。这样,为了达到式(2)新的平衡关系,在粗、中轧机组中引入了张力控制的功能(在精轧机组中用活套功能来实现),得到式
Vn=Vn-1×Rn(1+Km+Kt) (3)
式中 Vn、Vn-1-机架n与n-1的出口线速度
Rn——轧件通过n机架的延伸系数
Km——手动干预时对n一1机架的速度调整系数
Kt——张力作用反映到n--1机架的速度调整系数
同时,根据张力自动调节理论,张力变化与速度变化还具有以下传递函数关系
δF/A=士Kt/(1+Tts)×δV (4)
式中 δF/A——轧件上单位面积的张力增量
Kt/(1+Tts)——放大倍数为Kt,时间常数为Tt的一阶惯性环节
δV——轧机速度增量
这样,调整张力,就可以协调机架间的速度,从而达到保证机架问金属秒流量相等的目的。
在自动控制算法中,机架n与n-1间的张力是通过测量机架n-1电机的电磁转矩变化量来实现的。因为在轧制过程中.轧制转矩可用下式来
Tm=TT+Tt+Ta+Tf (5)
式中 Tm——总的轧制力矩
TT——轧件金属压下量所需的轧制力矩
Tt——张力所产生的力矩
Ta——加速力矩
Tf——机械摩擦等所产生的附加力矩
在稳定轧制状态下,Ta=0,若进一步忽略Tf,则
Tm=TT+Tt (6)
其中Tt与工艺参数有关.如孔型道次、轧制压下量、钢温、材质等,一旦确定,应为常数,则
δTm=δTt=(D/2)×δF=i×η×δTm¹即
δF=(2/D)×i×η×δTm¹ (7)
式中δF——机架间张力变化量
D——机架有效辊径¹
i——减速箱速比
η——机械传动系统效率
δTm¹——主电机上轴输出转矩
由式(7)可见,在一定的条件下,从电机的输出转矩变化量上就可以推算出该机架所受的张力变化。(注意:对于式(7)中机架n与n-1间的张力变化,所有参数总是以机架n-1为研究对象)。
同时,在自动控制算法中,粗中轧轧件头部微张力控制是以下列概念为基础的。
(1)后张力变化对传动转矩的影响比前张力小2~4倍。即后张力对转矩作用较小,这就意味着:对于变化的速度关系,下游轧机比上游轧机的转矩变化来得小。这一结论也就说明在大多数情况下,即使控制系统已记忆了下游轧机压下量所需的转矩,该控制系统仍能继续进行速度关系的校正,也就是说当轧件被咬人n+1机架前,n机架与n-1机架问的速度校整不会影响到该机架电流检测的准确性。
(2)轧件进入下游轧机前,上游轧机转矩相当于该机架辊缝压下量所需的转矩,未受其它临时性力矩的干扰影响,即式(5)中假定T