五,电压/电流转换电路的选择
由运算放大器组成恒流输出电路,晶体三极管进行扩流,晶体管发射极的电阻组成电流敏感电路,在电阻两端产生反馈电压。由于该级的增益确定为1,所以,RF=Rf=10KΩ。此时电阻两端的电压严格跟踪输入电压,只是极性相反,即Vro=-Vi 。
已知前级输出电压为-0.042V~-0.867V ,所以要求流过51Ω电阻的电流为
Io=V/R=(0.042~0.867)/51=0.82~17mA 。
加上系统电路元件的静态电流3 mA ,系统电流为
0.82~17+3=3.82~20mA
适当调整零点和量程电位器,使得系统电流在输入0~5A/AC 时,输出电流为4~20mA /DC 即可。
由于本电路的负载是长电缆,为了避免电路产生振荡,在运放的反馈端(即反相输入端与输出端之间)增加了防止寄生振荡的电容器(0.1μF)。
具体电路见(图五)。
六,辅助电源的选择
为了满足运算放大器工作时处理负电压信号,必须给系统提供相应的正,负工作电压。所以在系统共用端与电源负极回路串联一只发光二极管,利用发光二极管工作是产生的电压降作为运算放大器的负电源。同时将运算放大器的负电源端与发光二极管的阴极接通,从而提高了系统共用端的电位,相映对于系统共用端来讲,运算放大器得到了正,负工作电源。
发光二极管的正向压降:红色1.5V 左右;绿色1.7V 左右;黄色1.9V 左右。
同时,发光二极管兼任变送器的工作状态指示灯。
七,电源极性保护电路
在系统回路中串联一只二极管就构成了电源极性保护电路。
当电源极性正确是,发光二极管发光,证明电源极性正确;而电源极性接反时,二极管截止,没有电流通过变送器系统,发光二极管则不会发光。
同时,变送器正常工作时,还可以根据发光二极管的亮度变化情况,判断工作电流的大小。