你现在位置:首页>技术论文>电气常识>电子元件>正文
利用开关电容滤波器实现抗混叠滤波
日期:2008-5-6 23:12:50 来源:本站整理  
点击: 作者:
点击【】放大字体.
WWW_PLCJ-S_COM-PLC-技.术_网(可-编程控-制器技术-门户)

摘要:带外杂散信号所引起的混叠现象是A/D转换器应用中所面临的关键问题,如果没有适当的滤波处理,这些信号会严重影响数据转换系统的性能指标。本文主要讨论抗混叠滤波的原理及其对系统性能的影响。本文针对这一应用,提供了一个开关电容滤波器设计范例,该方案具有极高的性价比。本文几乎涵盖了所有与高性能系统设计有关的重要参数和实际问题。
WWW_PLC※JS_COM-PLC-技.术_网(可编程控※制器技术门户)

产生混叠的来源:这一点在奈奎斯特定理中给出了说明。奈奎斯特定理指出:时间连续信号转换成离散信号时,需要在一个周期内的采样次数多于2次。如果采样次数不够,将无法恢复丢失的信息。从图1可以更清晰地看到这一点,如果信号每周期采样一次,得到的只是一个直流信号(幅度为任意值),如图1a所示。如果每周期采样两次,得到一个方波信号(图1b)。值得注意的是:对输入信号进行每周期2次的采样是一种非常特殊的情况,任何时候都要避免这种情况。图1c所示是以200kHz采样率对190kHz信号进行采样的情况。所得信号是一个完好的正弦波,但频率是错误的。频率的改变正是由于混叠现象导致的。
WWW_PL※CJS_COM-PLC-技.术_网

图1a. 对正弦信号进行每周期一次的采样时,得到一个幅度为任意值的直流信号。
WWW_P※LCJS_CO※M-PLC-技-.术_网

图1a. 对正弦信号进行每周期一次的采样时,得到一个幅度为任意值的直流信号。
WWW_PLC※JS_COM-PLC-技.术_网(可编程控※制器技术门户)

图1b. 对同一正弦波每周期采样两次,得到一个方波,幅度信息丢失。
WWcW_PLCJS_COM-PLC-技.术_网

图1b. 对同一正弦波每周期采样两次,得到一个方波,幅度信息丢失。
WWW_PLCJ-S_COM-PLC-技.术_网(可-编程控-制器技术-门户)

图1c. Fsignal = 190kHz、Fs = 200kHz是欠采样信号,所得结果是混叠现象导致的。
WWW_PLCJS※COM-PLC-技.术_网(可※编程控※制器技术门户)

图1c. Fsignal = 190kHz、Fs = 200kHz是欠采样信号,所得结果是混叠现象导致的。
WWW_P※LCJS_COM-PLC-)技.术_网

图2所示是在频域的表现形式,从图中可以看出,频率高于 f > fs/2的信号被镜像到fs/2。为了避免这种现象,必须保证信号中没有更高的频率成份。因此,我们必须了解信号的最高频率,采样频率需要高于这个频率的两倍。一种最原始的考虑是从数字域解决这个问题,但这显然是不可取的,因为一旦完成信号采样,有些信号混叠到所感兴趣的频段,则无法从信号中移除这些频率成份。抗混叠滤波必须在模拟域进行,即在信号采样之前。
WWW_P※LCJS_COM-PLC-)技.术_网

图2. 频域中的混叠现象,欠采样信号镜像到fs/2。
WWW_PLC※JS_COM-PmLC-技.术_网

图2. 频域中的混叠现象,欠采样信号镜像到fs/2。
P_L_C_技_术_网——可——编——程——控-制-器-技——术——门——户

下一步 ―设计抗混叠滤波器。设计抗混叠滤波器需要首先确定所希望的滤波特性(截止频率、过渡带衰减等),然后选择能够满足应用需求的最佳滤波方案(有时称为滤波器类型)。一般情况下,采用过采样、而且过采样频率越高,滤波器设计越容易。但是,过采样需要更高速率的ADC,成本也越高。
WWW_P※LCJS_COM-PLC-)技.术_网

例如,过采样因子为8时,采样频率是最高信号频率的八倍。这在ADC成本和滤波器复杂度方面达到了一个较好的折衷。假设ADC分辨率为14位,能够提供80dB的信噪比(SNR)。采用一半的采样率(这里为信号频率的4倍)时,低通滤波器需要提供80dB的衰减,以确保所有杂散信号经过足够的衰减,不会出现在采样后的信号中。这意味着在过渡带内需要提供每倍频程40dB的衰减,需要高阶滤波器达到这一设计要求。7阶巴特沃斯滤波器能够满足上述要求,但对于具体应用并非最佳选择。可针对不同的应用选择不同的滤波器类型,图3所示为巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器的频响特性。从图中可以看出,它们具有不同的通带、过渡带特性。椭圆滤波器与巴特沃斯滤波器相比,椭圆滤波器的过渡带更陡峭,但其相频特性较差。应根据具体应用选择滤波器类型,对于普通的数据采集系统,可以选用巴特沃斯滤波器(或贝塞尔滤波器),如果对相位精度要求不高的话,也可以选择切比雪夫、甚至椭圆滤波器。
P.L.C.技.术.网——可编程控制器技术门户

图3. 不同滤波器频率响应的比较
WW.W_PLCJS_COM-PLC-技.术_网

图3. 不同滤波器频率响应的比较
WWW_PLCJS@_COM%-PLC-技.术_网

通用的A/D转换器有:用于中等速率的SAR (逐次逼近) ADC;用于高速到超高速率的闪速ADC;用于低速系统的Σ-ΔADC。它们都需要抗混叠滤波器,对滤波器的要求取决于转换速率、所希望的输入带宽,但Σ-ΔADC比较特殊。这种转换技术采用非常高的输入采样率和转换速率,而后续数字滤波降低了有效吞吐率,这会影响分辨率(动态范围)的提高。Σ-ΔADC对抗混叠滤波器的要求与输入采样率和最高信号频率之比有关,这种对需求的降低同样也表现在其它过采样数据转换器中,这种情况下可以选用简单的RC滤波器。选用较简单的抗混叠滤波器会产生较长的传输延时,这为使用闭环控制或多路转换的转换器增加了设计难度。
WWW.PLCJS.COM——可编程控制器技术门户

由于模拟滤波器具有一定的设计难度和较大的公差,而且制造困难,特别是对于空间紧凑的产品,许多设计人员不愿意使用模拟滤波器。衡量误差的一个较好准则是假设分离元件容限加倍,这样,如果采用标准的商用化电阻器和电容器,将对角频率和过渡带造成很大的误差。解决这一问题的最佳途径是选择集成滤波器方案,可以从Maxim等公司获得这种芯片。
W1WW_P4LCJS_COM-PLC-技.术_网

集成滤波器有两种类型:连续时间滤波器和开关电容滤波器,连续时间滤波器通常需要外部元件调节角频率,从而限制了它们的灵活性。开关电容滤波器可以根据其结构灵活使用,一般情况下,可以替代分离或集成连续时间滤波器。
WW.W_PLCJS_COM-PLC-技.术_网

开关电容滤波器是一种很早就被人们认可的滤波器结构,利用当前的硅工艺技术能够可靠集成。其工作原理和数学推导如图4所示。工作原理是:在电容器两端的开关控制下,电容被充电、放电。这种电荷转移过程产生脉冲电流,可以计算其平均电流,当开关频率足够快时,该电流等效于流过电阻的电流,可看作是电阻被一个电容所取代。电流和间接电阻值取决于两个因素:电容大小和开关频率。开关频率越高、电容值越大,则电流越大,或者说,电阻值越小。如果采用这种滤波器结构,频率特性将随着电容尺寸或开关频率的变化而改变。在集成方案中,电容值是固定的,滤波特性受开关频率的控制。这种滤波器的原理如图5所示。
WWW_PLC※JS_COM-PmLC-技.术_网

图4. 开关电容原理框图
WWW_P※LCJS_CO※M-PLC-技-.术_网

图4. 开关电容原理框图
WWW_P※LCJS_COM-PLC-)技.术_网

图5. 利用开关电容技术构成简单的滤波器
WWW_PLCJS@_COM%-PLC-技.术_网

图5. 利用开关电容技术构成简单的滤波器
WWcW_PLCJS_COM-PLC-技.术_网

滤波器的精度取决于各个元件的容限,分离方案中,我们只能使用容限不一致的元件。而在集成方案中,可以保证很高的元件一致性(0.1%以内)。因此,我们可以很好地控制集成滤波器的频响特性。例如,MAX7490的角频率精度可以达到0.2%,而采用分离元件则无法达到这一指标。另外,集成方案还具有出色的温度特性,温漂系数可以达到10ppm/°C。
WWW_P※LCJS_CO※M-PLC-技-.术_网

这里还需要特别指出开关电容方案对信号的采样,它将时间连续信号转换成时间离散信号,这意味着我们还要再次考虑混叠问题。值得庆幸的是,这种滤波器的采样速率非常高,通常是100倍的过采样。所以,只需采用一个简单的阻容滤波器。系统中另外一个需要考虑的问题是:开关时钟的相位抖动所产生的失真,这与ADC中存在的问题相同。图6给出了一个正确信号被错误采样的情况,会导致一定的幅度误差。
WWW_PLCJ-S_COM-PLC-技.术_网(可-编程控-制器技术-门户)

图6. 欠采样引起的幅度失真
——可——编——程——控-制-器-技——术——门——户

图6. 欠采样引起的幅度失真
WWW_P※LCJS_COM-PLC-)技.术_网

时钟抖动有两种表现形式,如果相位误差是随机的,噪声基低将升高;如果抖动是周期性的,失真(THD)将增大。抖动是一个时间量,例如:ps峰峰值或RMS。为了达到一定的信号纯度,能够容许多大的抖动呢?参考文献1中指出,对于一个16位的系统,1nspp(峰峰值)的时钟抖动会使SNR从98dB降至91dB。为了将抖动的影响限制到0.5dB,抖动不能高于400ps

本新闻共2页,当前在第11 2  
P_L_C_技_术_网——可——编——程——控-制-器-技——术——门——户

上一篇: 三极管的另用
下一: 没有了
评论内容
载入中...
载入中...
P
L
C



|










|


P
L
C









·最新招聘信息
·最新求职信息
·推荐产品
·推荐厂商
·栏目热门排行
·站内热门排行