摘 要:采用变桨距控制的风力发电机不但可以吸收更多的风能,而且使风力机具有更好的起动和制动性能,保证风力机可靠地运行。在风力发电机组或电网发生故障时,可以控制变桨距机构使叶片顺桨,从而使叶轮迅速制动;在风速高于安全运行风速时,可以使叶片处于顺桨状态,改善风力机组的受力状况,避免大风对风力机的损害。此外,若通过合适的变桨距控制,可以减小传递链上的转矩振荡;国外的研究人员通过对独立变桨距风力发电机的研究发现,采用对每个叶片进行合理的控制可以减小塔架的振荡以及叶片的载荷,从而可以减小风机的疲劳度,延长风力机使用寿命。本文采用罗克韦尔 SLC 500系列可编程控制器(PLC)作为风力发电机的变桨距控制器,这种变桨控制器具有控制方式灵活,编程简单,抗干扰能力强等特点。本文介绍了变桨距系统的工作原理,设计了变桨控制器的软件系统和硬件系统,在实际风力发电机组上进行了实验验证,运行效果良好。预计罗克韦尔 SLC 500系列可编程控制器(PLC)在我国风力发电场合会有大的作为。WW.W_PLCJS_COM-PLC-技.术_网
关键词:变桨距 风力发电机 可编程控制器 罗克韦尔——可——编——程——控-制-器-技——术——门——户
1 引言WWW_PLCJS※COM-PLC-技×术_网(可编程控※制器技术门户)
风能是可再生能源中发展最快的清洁能源,也是最具有大规模开发和商业化发展前景的发电方式。我国风能资源储量丰富,发展风能对于改善能源结构缓解能源短缺具有重大现实意义。近年来,我国风电产业规模逐步扩大,风电已成为能源发展的重要领域。WWW_PLC※JS_COM-PmLC-技.术_网
在风电技术发展方面,风力发电机单机容量朝着大型化发展,兆瓦级风力机已经成为了国际风力发电市场的主流产品。目前大型风力发电机组普遍采用变桨距控制技术,例如,VESTAS的V66-1.65MW、V80-2MW,ENERCON的E-66-1.8MW、E-58-1MW, GE的1.5MW、 2.5MW、3.6MW机组,REPOWER的MD77-1.6 MW、MM82 -2MW,NORDEX的S77/1.5MW等都采用变桨距系统。——可——编——程——控-制-器-技——术——门——户
变桨距调节是沿桨叶的纵轴旋转叶片,控制风轮的能量吸收,保持一定的输出功率。变桨距控制的优点是能够确保高风速段的额定功率,额定功率点以上输出平稳、在额定点具有较高的风能利用系数、提高风力机组起动性能与制动性能、提高风机的整体柔性度、减小整机和桨叶的受力状况。因此国际风力发电市场的主流产品是变速变桨距机组。P.L.C.技.术.网——可编程控制器技术门户
世界上大型风电机组变桨距系统的执行机构主要有两种,液压变桨距执行机构和电动变桨距执行机构。其中,电动变桨距系统的桨距控制通过电动机来实现,结构紧凑、控制灵活、可靠,正越来越受到大多数整机厂家的青睐,市场前景十分广阔。WW.W_PLCJS_COM-PLC-技.术_网
目前,我国MW级变速恒频风电机组电动变桨距系统产品一直依赖进口,国外比较有代表性的有德国LUST、SSB、美国GE 公司的产品。其高昂的产品价格、技术服务的不足和对关键技术的封锁严重影响了我国风电产业的健康快速发展。风力发电机向着大型化的方向发展,变桨距控制技术已经成为风力发电的关键技术之一,研制电动变桨距系统实现大型风力机电动变桨距控制技术国产化、产业化的要求十分迫切。因此,掌握电动变桨距控制技术将改变国外公司对变桨距控制技术垄断的现状,提高我国风电关键技术的研制能力,降低风力发电的成本;对加快拥有自主知识产权的风电设备研制,大力发展风电事业具有重要意义,从而使我国在该领域的研究达到国际先进水平。WWcW_PLCJS_COM-PLC-技.术_网
变速变桨风力发电机组是风力发电技术发展的主流方向,控制系统是机组的关键部件之一。控制系统的性能优劣对风机运行的效率和使用寿命有至关重要的影响。20世纪90年代,国外便开始了对变速风力机的运行特性和控制策略的研究,并取得了一系列的成果,生产制造出成熟可靠的商业化运营的控制系统产品。目前的研究热点集中在基于现代控制理论的新型控制算法在风力发电控制系统中的应用上,以期进一步提高风力机的运行效率,减小疲劳载荷,改善输出电能质量。我国风电产业起步较晚,目前对变速风电机组的运行特性及规律缺乏深入研究,在控制系统的产业化项目中,缺乏最优的控制策略依据。深入研究风电机组及风力机的运行特性和规律对于控制系统的分析与设计具有十分重要的指导意义。plcjs.技.术_网
最大风能捕获是控制系统的重要功能之一,它直接影响的风力发电机组的运行效率。对于提高风电机组的发电量,减小风电成本具有重要意义。而传统的控制方法存在诸多不足,引起较大的能量损失,新型控制算法的研究和应用,可以有效提高风能利用效率,实现最大风能捕获。plcjs.技.术_网
为了获得足够的起在变桨距系统中需要具有高可靠性的控制器,本文中采用了罗克韦尔 SLC 500系列可编程控制器(PLC)作为变桨距系统的控制器,并设计了PLC软件程序,在国外某知名风电公司风力发电机组上作了实验。WWW※PLCJS_COM-PL#C-技.术_网(可编※程控※制器技术门户)
2 变桨距风电机组及其控制策略WWW_P※LCJS_COM-PLC-)技.术_网
变桨距调节是沿桨叶的纵轴旋转叶片,控制风轮的能量吸收,保持一定的输出功率。如图1所示为变桨距风力发电机的原理图。变桨距控制的优点是机组起动性能好,输出功率稳定,停机安全等;其缺点是增加了变桨距装置,控制复杂。plcjs.技.术_网
WWW_PLCJS@_COM%-PLC-技.术_网
WWW_P※LCJS_CO※M-PLC-技-.术_网
图1 变桨距风电机组原理图
P_L_C_技_术_网——可——编——程——控-制-器-技——术——门——户
在风力机设计的初期,设计人员就考虑到了变桨距控制,但是由于对空气动力学特性和风力机运行工况认识不足,控制技术还不成熟,风力机的变桨距机构可靠性不能满足运行要求,经常出现飞车现象。直到20世纪90年代变桨距风力机才得到广泛的应用。目前大型风力发电机组普遍采用变桨距控制技术,例如, VESTAS的V66-1.65MW、V80-2MW,ENERCON的E-66-1.8MW、E-58-1MW,ENRON Wind的 1.5S-5MW,NORDEX的S77/1500KW等都采用变桨距结构。WWW_PLCJ-S_COM-PLC-技.术_网(可-编程控-制器技术-门户)
定桨距控制,风力机的功率调节完全依靠叶片结构设计发生失速效应使高风速时功率不增大,但由于失速点的设计,很难保证风力机在失速后能维持输出额定功率,所以一般失速后功率小于额定功率[1][4];而变桨距风力机可以根据风速的大小调节气流对叶片的功角,当风速超过额定风速时,输出功率可以稳定在额定功率上。如图2所示为定桨距风力机和变桨距风力机的输出功率比较曲线。在出现台风的时,可以使叶片处于顺桨,使整个风力机的受力情况大为改善,可以避免大风损害风力机组。在紧急停机或有故障时,变桨距机构可以使叶片迅速顺桨到90°,风轮速度降低,减小风力机负载的冲击,延长风电机组的使用寿命。P_L_C_技_术_网——可——编——程——控-制-器-技——术——门——户
WWW_PLCJS_COM-PLC-技.术_网
WWW※PLCJS_COM-PL#C-技.术_网(可编※程控※制器技术门户)
图2 变桨距和定桨距风力机的功率曲线
WWW_PLC※JS_COM-PmLC-技.术_网
变桨距控制技术关系到风力发电机组的安全可靠运行,影响风力机的使用寿命。随着变桨距风力机的广泛应用,许多学者和研究人员投入了变桨距控制技术及变桨距风力机结构的研究。目前人们主要致力于通过控制桨距角使输出功率平稳、减小转矩振荡、减小机舱振荡等技术的研究。Vestas公司推出了 OpiTip(最佳桨距角)风力发电机组,不但优化了输出功率,而且有效的降低的噪音。plcjs.技.术_网
目前变桨机构有两种:一种是液压变桨距执行机构;另一种是电动变桨距执行机构。液压变桨控制机构具有传动力矩大、重量轻、刚度大、定位精确、执行机构动态响应速度快等优点,能够保证更加快速、准确地把叶片调节至预定节距。目前国外著名大公司如丹麦VESTAS的V80-2.0MW风机等都采用液压变桨机构[5][6]。电机变桨执行机构是利用电机对桨叶进行控制,电动变桨没有液压变桨机构那么复杂,也不存在非线性、漏油、卡塞等现象发生,因此目前受到了许多厂家的关注。如REPOWER的XD77、MM92、GE公司生产的兆瓦级风力发电机就采用了电动变桨距机构。P_L_C_技_术_网——可——编——程——控-制-器-技——术——门——户