1 车速传感器性能测试平台简介
车速传感器是电控汽车的关键部件,其性能优劣直接关系到发动机怠速和变速器控制,因此,必须对其各项性能进行全面严格的测试。而这一系列的性能测试又有赖于一个稳定、高效的测试平台。传统测试平台通常采用由测试设备、测试操作台计算机和后台管理计算机组成的三级系统结构,如图1所示。
在此测试平台中,测试设备一般只提供串行通信接口(如RS-232、RS-485等),无法直接接入管理计算机所在局域网(如最常用的Ethernet)。所以,整个系统必须通过一个测试操作台计算机将上层局域网和底层串行总线网络连接起来以保证实测数据(各项性能指标数据)的顺利上传和测试操作命令(如车速传感器耐温测试、动/静态特性测试)的准确下达。为此不但要增设测试操作台计算机工作站,同时还必须安装各种串行口通信卡、以太网网卡和相应的板卡驱动程序,开发包含串行口通信模块和以太网通信模块的测控软件。由此可见,由于通信接口和协议的不兼容,使得传统
2 基于串行口-以太网桥的测试平台
通过对图1所示测试平台的研究,发现造成系统平台成本高、结构复杂、中间处理过程繁多的根本原因是底层各测试设备和上层局域网通信接口、协议的不兼容。一般来说,底层测试设备需传输的数据量很小,大多只提供通信距离短、成本低的串行口(如RS-232、RS-485);而上层的局域网大多采用以太网。所以针对此类应用,可以开发一种基于微处理器的嵌入式串行口-以太网桥实现协议转换,直接将各种仅支持串行口的测试设备接入以太网,实现各测试设备与管理计算机局域网的无缝连接,简化数据传输过程。
引入嵌入式串行口-以太网桥后的车速传感器性能测试平台结构如图2所示。
相比图1所示的传统测试平台,新测试平台下的串行口-以太网桥负责完成串行口测试设备和以太网之间的协议转换(即在底层完成串行帧数据和以太网帧数据的格式转换),实现了各测试设备和以太网的无缝连接,简化了数据传输过程。测试人员可以在远端通过上层管理计算机直接下达各种测试命令来控制各测试设备完成传感器各项性能指标的测试;而各项实测数据也能从各测试设备直接传送到后台管理计算机进行处理;从而使后台管理计算机能以多任务方式同时完成前台测试设备控制和后台数据处理(如数据报表统计分析,图形曲线显示和数据库更新),成为平台中的管控一体化工作站,省去了原平台中的测试操作台计算机工作站,测试人员也不必再亲临现场进行各种测试操作,极大地降低了工作强度。这样一来,不仅使系统成本大为降低、体积大为缩小、结构更加简单,同时将前台测试控制和后台数据处理集中于一台计算机,实现了管控一体化,节省了人力资源,使得系统的软硬件资源得到了最大限度的利用。
3 串行口-以太网桥设计
通过新旧测试平台对比,可以看到测试设备和后台管理计算机两大部件在性能和成本上基本相同。所以新测试平台的性能好坏和成本高低很大程度上取决于新引入的嵌入式串行口-以太网桥的性能和成本。目前嵌入式产品市场上此类网络设备大多是基于高档微处理器和实时操作系统开发的,其价格昂贵,且提供的串行口也只有1~2个,不适合需将多个串行口设备集中接人以太网,同时又要控制成本的应用场合。本文根据这类具体的应用需求在8位微控制器平台上设计了一种提供多个串行口的低成本嵌入式串行口-以太网桥。下面对其硬件和软件系统设计进行介绍。
3.1 硬件系统设计
实现本系统所用串行口-以太网桥的功能,需要进行多个串行口设备的以太网接人,以及串行通信协议和以太网通信协议的相互转换。所以硬件电路设计主要包括多路串行口电路模块和以太网接口电路模块设计。本文硬件系统方案选用ST公司的工业级SoC型微控制器μPSD3254和Realtek公司的高性能以太网控制器RTL8019AS两大核心器件进行电路设计。硬件系统设计如图3所示。
其中μPSD3254是一款由8051内核