这其中最重要,也是最关键的挑战,就是面对在汽车上用了好几十年的12V电压,已经没有办法满足高度电子化对于电压的急迫需求。因此,除了必须要因应42V电压取代12V电压的技术问题之外,还有当汽车电源主体架构改变之后,可能要面临到的高成本问题。由此可见,未来车用电子必须要寻求电源管理最佳化解决方案,甚至是以模拟、分离、电源MOSFET晶体管…等元件,解决车内应用与整合性的技术问题。
车用电力系统日渐短缺 迫切需要新元件及新设计
越来越多的汽车电子设备,或电子系统导入车内应用之后,车用电力供应逐渐呈现不足的现象,使得汽车制造厂必须开始面对功率的控制,以及功率转换技术提出更高的要求,借以推动车用功率半导体、相关封装技术,能够更进一步的往前发展,这当中所包含的领域,也不再只是功率大小,还是MOSFET(Metal-Oxide-Semiconductor Field Effect Transister;MOSFET)晶体管、绝缘闸极晶体管(Insulated Gate Bipolar Transistor;IGBT)及控制与保护回路整合模块(Intelligent Power Module;IPM)等问题。
归纳其主原因,是因为车上所使用的功率半导体元件与一般较常用的功率半导体元件比较起来,不论是对电压或电流、开关频率、功率损失、动态特性,甚至对于元件保护程度,都是相当严苛的;再加上汽车产业对于「用电」的规范,已经开始从12V提升到42V,所以对于汽车用电的要求也就更高了。另一方面,必须具备也可进行高频切换动作及电能处理,才能使车上的电子产品,更能够发挥轻薄短小的应用优势,甚至是具有车上所需的高效率、信赖度与可靠性等要求。
以实际例子来说明:比方说,当驾驶者在红灯要转为绿灯可前进时,在第一时间将发动机关闭,主要是因为当驾驶者踩下油门时,交流发电机促使汽车能够很快地加速前进,如此一来,汽车不但能够降低排放有害气体,同时还能减少油料的用量。在这一方面,还能使用多余的电力来进行的各项控制,包括:电子动力转向(EPS)、主动式悬挂系统、电子透平机辅助设备、电子阀门控制、变速空调等,因此,这对集成式启动器交流发动机是非常重要的。
从技术门槛的角度来看,汽车集成式启动器交流发动机主要的技术困难在于,大功率的电子控制系统是采取部分设计方式,在执行上有它的困难。换句话说,由于汽车集成式启动器交流发动机是一个三相逆变器/整流器,除了负责对42V负载进行供电作用,或者当整流器在进行工作时,也能为36V电池进行充电之外,还必须在发动机起动时,能以逆变器方式为起动电动机进行供电的动作。从这边就能看得出来,为了让汽车电子系统能具有稳定的供电设计,就必须先厘清大功率电子元件,在不同应用阶段应该要有不同的工作诉求。
MOSFET晶体管 改造汽车电源供应系统
再来,谈谈功率型金属氧化层场效晶体管(简称为功率MOSFET晶体管),这是一种属于多载式导电的单极型电压控制元件,其特性就是:开关速度快、高频率性能好,输入阻抗高、 驱动功率小、热稳定性优良、无二次击穿…等优点,可以提供给设计者一种高速度、高功率、高电压,以及高增益的元件,因此在各类型小功率开关电路的应用非常广泛。